Embedded graphs

Sasha Patotski

Cornell University

ap744@cornell.edu

November 20, 2014

Can you cut a Klein bottle into a single Möbius band?

How to get a sphere with g handles out of a polygon?

Assume Euler formula: For any planar graph G one has V - E + F = 2.

< 67 ▶

Assume Euler formula: For any planar graph G one has V - E + F = 2. Prove that K_5 and $K_{3,3}$ are not planar.

Assume Euler formula: For any planar graph G one has V - E + F = 2. Prove that K_5 and $K_{3,3}$ are not planar.

Can K_5 and $K_{3,3}$ be embedded into a Möbius band?

Embed K_5 into torus and $K_{3,3}$ into $\mathbb{R}P^2$

Sasha Patotski (Cornell University)

Can we embed K_6 into a torus?

Can we embed K_7 ? or K_8 ? what about K_9 ?

___ ▶

э

Definition

A 2-*cell embedding* of a graph G into a surface Σ is such an embedding, so that after you remove the graph, the resulting surface will be a disjoint union of discs.

Theorem

Suppose graph G is 2-cell embedded into a sphere with g handles. Then

$$V-E+F=2-2g,$$

where V is the number of vertices, E is the number of edges and F is the number of faces.

Induction on g. If g = 0, then we are in the case S^2 . Here, induction on edges.

End of the proof

2

End of the proof

2

End of the proof

Can we embed K_8 into a torus?

æ

< □ > < ---->

Can we embed K_8 into a torus?

Theorem

For any graph there exist a sphere with g handles where it can be embedded.

Sasha Patotski (Cornell University)

3